Turbojet Engine Industrial Min–Max Controller Performance Improvement Using Fuzzy Norms

Author:

Jafari Soheil,Nikolaidis TheoklisORCID

Abstract

The Min–Max control strategy is the most widely used control algorithm for gas turbine engines. This strategy uses minimum and maximum mathematical functions to select the winner of different transient engine control loops at any instantaneous time. This paper examines the potential of using fuzzy T and S norms in Min–Max selection strategy to improve the performance of the controller and the gas turbine engine dynamic behavior. For this purpose, different union and intersection fuzzy norms are used in control strategy instead of using minimum and maximum functions to investigate the impact of this idea in gas turbine engines controller design and optimization. A turbojet engine with an industrial Min–Max control strategy including steady-state and transient control loops is selected as the case study. Different T and S norms including standard, bounded, Einstein, algebraic, and Hamacher norms are considered to be used in control strategy to select the best transient control loop for the engine. Performance indices are defined as pilot command tracking as well as the engine response time. The simulation results confirm that using Einstein and Hamacher norms in the Min–Max selection strategy could enhance the tracking capability and the response time to the pilot command respectively. The limitations of the proposed method are also discussed and potential solutions for dealing with these challenges are proposed. The methodological approach presented in this research could be considered for enhancement of control systems in different types of gas turbine engines from practical point of view.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3