Multi-Object Detection in Traffic Scenes Based on Improved SSD

Author:

Wang Xinqing,Hua Xia,Xiao Feng,Li Yuyang,Hu Xiaodong,Sun Pengyu

Abstract

In order to solve the problem that, in complex and wide traffic scenes, the accuracy and speed of multi-object detection can hardly be balanced by the existing object detection algorithms that are based on deep learning and big data, we improve the object detection framework SSD (Single Shot Multi-box Detector) and propose a new detection framework AP-SSD (Adaptive Perceive). We design a feature extraction convolution kernel library composed of multi-shape Gabor and color Gabor and then we train and screen the optimal feature extraction convolution kernel to replace the low-level convolution kernel of the original network to improve the detection accuracy. After that, we combine the single image detection framework with convolution long-term and short-term memory networks and by using the Bottle Neck-LSTM memory layer to refine and propagate the feature mapping between frames, we realize the temporal association of network frame-level information, reduce the calculation cost, succeed in tracking and identifying the targets affected by strong interference in video and reduce the missed alarm rate and false alarm rate by adding an adaptive threshold strategy. Moreover, we design a dynamic region amplification network framework to improve the detection and recognition accuracy of low-resolution small objects. Therefore, experiments on the improved AP-SSD show that this new algorithm can achieve better detection results when small objects, multiple objects, cluttered background and large-area occlusion are involved, thus ensuring this algorithm a good engineering application prospect.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3