Optimum Extrapolation Techniques for Two-Dimensional Antenna Array Tapered Beamforming

Author:

Albagory YasserORCID,Alraddady FahadORCID

Abstract

Optimizing antenna arrays is essential for achieving efficient beamforming with very low sidelobe level (SLL) where adopting tapered window functions is one of the straightforward efficient techniques for achieving this goal. Recently, two-dimensional (2D) beamforming has been extensively required for many applications; therefore, this paper proposes two extrapolation techniques applied to one-dimensional (1D) tapered functions to efficiently feed 2D antenna arrays using cross-linear and adaptive radial tapering techniques. The first proposed 2D cross-linear tapering technique determines the 2D tapering coefficients by Hadamard multiplication of two right-angled grids of repeated 1D functions, while the second proposed adaptive radial tapering technique locates the antenna element in the 2D array in terms of its radial distance with respect to the array center, then converts this distance to an element index in a virtual 1D tapering window to determine the element weighting value. The adaptive radial tapering technique is optimized for achieving the minimum SLLs. The two proposed techniques are analyzed and discussed, where it is found that the adaptive radial tapering provides deeper SLLs compared to the cross-linear tapering technique. The two extrapolation techniques are examined for four window functions including triangular (Bartlett), Hamming, cosine-square, and Blackman windows, and the simulation results show that for extrapolating the Blackman window using adaptive radial tapering, a −50 dB SLL can be achieved which is independent on the array size, while cross-linear tapering provides −35 dB and −41 dB SLLs for 16×16 and 32×32 antenna arrays, respectively.

Funder

Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3