Analytical Design Solution for Optimal Matching of Hybrid Continuous Mode Power Amplifiers Suitable for a High-Efficiency Envelope Tracking Operation

Author:

Cao TaoORCID,Liu Youjiang,Chen Wenhua,Yang Chun,Zhou Jie

Abstract

An analytical method to design a power amplifier (PA) with an optimized power added efficiency (PAE) trajectory for envelope tracking (ET) architecture is proposed. To obtain feasible matching solutions for high-efficiency performance of the PA in the dynamic supply operation, hybrid continuous modes (HCM) architecture is introduced. The design space for load impedances of the HCM PAs with nonlinear capacitance is deduced mathematically using the device’s embedding transfer network, without the necessity of using load-pull. The proposed design strategy is verified with the implementation of a GaN PA operating over the frequency range of 1.9 GHz to 2.2 GHz with PAE between 67.8% and 72.4% in the 6.7 dB back-off power region of the ET mode. The ET experimental system was set up to evaluate the application of the PA circuit. Measurement results show that the ET PA at 2.1 GHz reaches the efficiency of 61%, 54%, 44% and an error vector magnitude (EVM) of 0.32%, 0.60%, 0.67% at an average output power of 34.4 dBm, 34.2 dBm, 34.1 dBm for 6.7 dB peak-to-average power ratios (PAPR) signals with 5 MHz, 10 MHz, and 20 MHz bandwidths, respectively. Additionally, tested by a 20 MHz bandwidth 16 quadrature amplitude modulation (QAM) signal, 41.8% to 49.2% efficiency of ET PA is achieved at an average output power of 33.5 dBm to 35.1 dBm from 1.9 GHz to 2.2 GHz.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3