Broadband and Efficient Envelope Amplifier for Envelope Elimination and Restoration/Envelope Tracking Higher-Efficiency Power Amplifiers

Author:

Varlamov OlegORCID,Nguyen Dang Canh,Grebennikov Andrei

Abstract

Increasing the efficiency of transmitters, as the largest consumers of energy, is relevant for any wireless communication devices. For higher efficiency, a number of methods are used, including envelope tracking and envelope elimination and restoration. Increasing the bandwidth of used frequencies requires expanding envelope modulators bandwidth up to 250–500 MHz or more. The possibility of using amplifiers with input signal quantization (AISQ), as an alternative to the most common hybrid envelope tracking modulators, is considered. An approach has been developed for optimizing AISQ characteristics according to the criterion of minimum loss when amplifying modern telecommunication signals with Rayleigh envelope distribution. The optimal quantization levels are determined and the energy characteristics of AISQ are calculated. AISQ loss power is shown to decrease by 1.66 times with two-level quantization, by 2.4 times with three-level quantization, and by a factor of 3.0–3.7 for four–five quantization levels compared to a class B amplifier. With these parameters, AISQ becomes competitive with respect to hybrid envelope tracking modulators but does not have electromagnetic interference from the pulse width modulation (PWM) path.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Studies of a Multi-level GaN FET PWM Modulator;2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO);2024-07-01

2. Simulation Model for Analyzing Reverse Intermodulation Distortion in Envelope Elimination and Restoration Switching Mode RF Power Amplifiers;2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF);2024-06-03

3. Methods for Increasing the Efficiency of Amplitude-Phase Modulated Signals Power Amplifiers;2024 Systems of Signals Generating and Processing in the Field of on Board Communications;2024-03-12

4. Equipment Preparation for 26 MHz Band Synchronous DRM Trial Broadcasting;2024 Systems of Signals Generating and Processing in the Field of on Board Communications;2024-03-12

5. Research Multiservice Access Networks when Transmitting Heterogeneous Traffic;2023 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED);2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3