Focusing of Ultrahigh Resolution Spaceborne Spotlight SAR on Curved Orbit

Author:

Qian YuleiORCID,Zhu Daiyin

Abstract

Aiming to acquire ultrahigh resolution images, algorithms for spaceborne spotlight synthetic aperture radar (SAR) imaging typically confront challenges of curved orbit and azimuth spectral aliasing. In order to conquer these difficulties, a method is proposed in this paper to obtain ultrahigh resolution spaceborne SAR images on a curved orbit, which is composed of the modified RMA (Range Migration Algorithm) and the modified deramping-based approach. The modified RMA is developed to deal with the effect introduced by a curved orbit and the modified deramping-based approach is utilized to handle the problem of azimuth spectral aliasing. In the modified RMA, the polynomial expression of SAR two-dimensional spectrum on a curved orbit is derived with fourth-order azimuth phase history model and series reversion. Then, the singular value decomposition (SVD) is applied to decompose the expression of SAR two-dimensional spectrum numerically in order to acquire coordinates for Stolt interpolation in the scenario of curved orbit. In addition, the modified deramping-based approach is derived by introducing orbital state vectors in order to accommodate the situation of curved orbit in the proposed method. Experiments are implemented on point target simulation in order to verify the effectiveness of the presented method. In experiments, the range and azimuth resolution can achieve 0.15 m and 0.14 m, with focused scene size of 3 km by 3 km.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3