Goal-Oriented Obstacle Avoidance with Deep Reinforcement Learning in Continuous Action Space

Author:

Cimurs ReinisORCID,Lee Jin HanORCID,Suh Il HongORCID

Abstract

In this paper, we propose a goal-oriented obstacle avoidance navigation system based on deep reinforcement learning that uses depth information in scenes, as well as goal position in polar coordinates as state inputs. The control signals for robot motion are output in a continuous action space. We devise a deep deterministic policy gradient network with the inclusion of depth-wise separable convolution layers to process the large amounts of sequential depth image information. The goal-oriented obstacle avoidance navigation is performed without prior knowledge of the environment or a map. We show that through the proposed deep reinforcement learning network, a goal-oriented collision avoidance model can be trained end-to-end without manual tuning or supervision by a human operator. We train our model in a simulation, and the resulting network is directly transferred to other environments. Experiments show the capability of the trained network to navigate safely around obstacles and arrive at the designated goal positions in the simulation, as well as in the real world. The proposed method exhibits higher reliability than the compared approaches when navigating around obstacles with complex shapes. The experiments show that the approach is capable of avoiding not only static, but also dynamic obstacles.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference46 articles.

1. Rigid-motion scattering for texture classification;Sifre;arXiv,2014

2. Mobilenets: Efficient convolutional neural networks for mobile vision applications;Howard;arXiv,2017

3. Overview of Path-Planning and Obstacle Avoidance Algorithms for UAVs: A Comparative Study

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3