Design and Analysis of an Approximate Adder with Hybrid Error Reduction

Author:

Seo Hyoju,Yang Yoon Seok,Kim YongtaeORCID

Abstract

This paper presents an energy-efficient approximate adder with a novel hybrid error reduction scheme to significantly improve the computation accuracy at the cost of extremely low additional power and area overheads. The proposed hybrid error reduction scheme utilizes only two input bits and adjusts the approximate outputs to reduce the error distance, which leads to an overall improvement in accuracy. The proposed design, when implemented in 65-nm CMOS technology, has 3, 2, and 2 times greater energy, power, and area efficiencies, respectively, than conventional accurate adders. In terms of the accuracy, the proposed hybrid error reduction scheme allows that the error rate of the proposed adder decreases to 50% whereas those of the lower-part OR adder and optimized lower-part OR constant adder reach 68% and 85%, respectively. Furthermore, the proposed adder has up to 2.24, 2.24, and 1.16 times better performance with respect to the mean error distance, normalized mean error distance (NMED), and mean relative error distance, respectively, than the other approximate adder considered in this paper. Importantly, because of an excellent design tradeoff among delay, power, energy, and accuracy, the proposed adder is found to be the most competitive approximate adder when jointly analyzed in terms of the hardware cost and computation accuracy. Specifically, our proposed adder achieves 51%, 49%, and 47% reductions of the power-, energy-, and error-delay-product-NMED products, respectively, compared to the other considered approximate adders.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Effective and Efficient Computation Architecture for Edge Computing Devices on IoMT-Based Deep Belief Networks;Edge Computing - Architecture and Applications for Smart Cities [Working Title];2024-07-11

2. Approximate Floating Point Precise Carry Prediction Adder for FIR Filter Applications;Circuits, Systems, and Signal Processing;2024-06-29

3. A Method for Swift Selection of Appropriate Approximate Multipliers for CNN Hardware Accelerators;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

4. Synthesis of Approximate Parallel-Prefix Adders;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2023-11

5. Computation Exactness Exploration of Exact Quantum Adders in NISQ;2023 20th International SoC Design Conference (ISOCC);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3