Abstract
In this paper, a remote sensing image fusion method is presented since sparse representation (SR) has been widely used in image processing, especially for image fusion. Firstly, we used source images to learn the adaptive dictionary, and sparse coefficients were obtained by sparsely coding the source images with the adaptive dictionary. Then, with the help of improved hyperbolic tangent function (tanh) and l 0 − max , we fused these sparse coefficients together. The initial fused image can be obtained by the image fusion method based on SR. To take full advantage of the spatial information of the source images, the fused image based on the spatial domain (SF) was obtained at the same time. Lastly, the final fused image could be reconstructed by guided filtering of the fused image based on SR and SF. Experimental results show that the proposed method outperforms some state-of-the-art methods on visual and quantitative evaluations.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献