A Novel RPWN Selective Harmonic Elimination Method for Single-Phase Inverter

Author:

Li Guohua,Liu ChunwuORCID,Fu Zhenfang,Wang Yufeng

Abstract

In the existing random pule width modulation (RPWM) selective harmonic elimination methods, the formula of switching cycle TN+1 is complex, and the duty ratio DN+1 of the next switching cycle needs to be calculated in advance. However, in the case of unknown TN+1, DN+1 is also difficult to calculate accurately, and the two parameters are based on each other. A novel selective harmonic elimination method in RPWM is proposed in this paper. The PWM voltage pulse is placed at the back of the switch cycle, which simplifies the formula of the switch cycle TN+1 and eliminates the need to calculate the duty ratio DN+1. Two kinds of RPWM selective harmonic elimination ideas are summarized. The general formulas of the switch cycle, the effective random number k, and the upper and lower limits of switch frequency corresponding to k are derived. The spectrum shaping of inverter output voltage can be realized without using digital filter in this method. Simple algorithm, small calculation and easy implementation are characteristics of the proposed method. The simulation and experimental results confirm the ability of the proposed method for reducing harmonics at the specific frequency in power spectral density (PSD).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3