Hybrid Multicarrier Random Space Vector PWM for the Mitigation of Acoustic Noise

Author:

Madasamy P.ORCID,Verma Rajesh,Bharatiraja C.ORCID,J. Barnabas Paul Glady,Srihari T.,Munda Josiah LangeORCID,Mihet-Popa LucianORCID

Abstract

The pulse width modulation (PWM) inverter is an obvious choice for any industrial and power sector application. Particularly, industrial drives benefit from the higher DC-link utilization, acoustic noise, and vibration industrial standards. Many PWM techniques have been proposed to meet the drives’ demand for higher DC-link utilization and lower harmonics suppression and noise reductions. Still, random PWM (RPWM) is the best candidate for reducing the acoustic noises. Few RPWM (RPWM) methods have been developed and investigated for the AC drive’s PWM inverter. However, due to the lower randomness of the multiple frequency harmonics spectrum, reducing the drive noise is still challenging. These PWMs dealt with the spreading harmonics, thereby decreasing the harmonic effects on the system. However, these techniques are unsuccessful at maintaining the higher DC-link utilizations. Existing RPWM methods have less randomness and need complex digital circuitry. Therefore, this paper mainly deals with a combined RPWM principle in space vector PWM (SVPWM) to generate random PWM generation using an asymmetric frequency multicarrier called multicarrier random space vector PWM (MCRSVPWM). he SVPWM switching vectors with different frequency carrier are chosen with the aid of a random bi-nary bit generator. The proposed MCRSVPWM generates the pulses with a randomized triangular carrier (1 to 4 kHz), while the conventional RPWM method contains a random pulse position with a fixed frequency triangular carrier. The proposed PWM is capable of eradicating the high-frequency unpleasant acoustic noise more effectually than conventional RPWM with a shorter random frequency range. The simulation study is performed through MATLAB/Simulink for a 2 kW asynchronous induction motor drive. Experimental validation of the proposed MCRSVPWM is tested with a 2 kW six-switch (Power MOSFET–SCH2080KE) inverter power module-fed induction motor drive.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3