Prediction of Operational Noise Uncertainty in Automotive Micro-Motors Based on Multi-Branch Channel–Spatial Adaptive Weighting Strategy

Author:

Hu Hao1ORCID,Deng Shiqi1,Yan Wang1,He Yanyong1,Wu Yudong2ORCID

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. School of Intelligent Manufacturing, Chengdu Technological University, Chengdu 611730, China

Abstract

The acoustic performance of automotive micro-motors directly impacts the comfort and driving experience of both drivers and passengers. However, various motor production and testing uncertainties can lead to noise fluctuations during operation. Thus, predicting the operational noise range of motors on the production line in advance becomes crucial for timely adjustments to production parameters and process optimization. This paper introduces a prediction model based on a Multi-Branch Channel–Spatial Adaptive Weighting Strategy (MCSAWS). The model includes a multi-branch feature extraction (MFE) network and a channel–spatial attention module (CSAM). It uses the vibration and noise data from micro-motors’ idle operations on the production line as input to efficiently predict the operational noise uncertainty interval of automotive micro-motors. The model employs the VAE-GAN approach for data augmentation (DA) and uses Gammatone filters to emphasize the noise at the commutation frequency of the motor. The model was compared with Convolutional Neural Networks (CNNs) and Multilayer Perceptrons (MLPs). Experimental results demonstrate that the MCSAWS method is superior to conventional methods in prediction accuracy and reliability, confirming the feasibility of the proposed approach. This research can help control noise uncertainty in micro-motors’ production and manufacturing processes in advance.

Funder

the Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3