Uncertainty Optimization of Vibration Characteristics of Automotive Micro-Motors Based on Pareto Elliptic Algorithm

Author:

Hu Hao1ORCID,Wang Deping2,Wu Yudong3ORCID,Deng Jianjiao2,Chen Xi2,Ding Weiping1

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. Global R&D Center, China FAW Corporation Limited, Changchun 130013, China

3. School of Intelligent Manufacturing, Chengdu Technological University, Chengdu 611730, China

Abstract

The NVH (Noise, Vibration, and Harshness) characteristics of micro-motors used in vehicles directly affect the comfort of drivers and passengers. However, various factors influence the motor’s structural parameters, leading to uncertainties in its NVH performance. To improve the motor’s NVH characteristics, we propose a method for optimizing the structural parameters of automotive micro-motors under uncertain conditions. This method uses the motor’s maximum magnetic flux as a constraint and aims to reduce vibration at the commutation frequency. Firstly, we introduce the Pareto ellipsoid parameter method, which converts the uncertainty problem into a deterministic one, enabling the use of traditional optimization methods. To increase efficiency and reduce computational cost, we employed a data-driven method that uses the one-dimensional Inception module as the foundational model, replacing both numerical models and physical experiments. Simultaneously, the module’s underlying architecture was improved, increasing the surrogate model’s accuracy. Additionally, we propose an improved NSGA-III (Non-dominated Sorting Genetic Algorithm III) method that utilizes adaptive reference point updating, dividing the optimization process into exploration and refinement phases based on population matching error. Comparative experiments with traditional models demonstrate that this method enhances the overall quality of the solution set, effectively addresses parameter uncertainties in practical engineering scenarios, and significantly improves the vibration characteristics of the motor.

Funder

Talent Program (Ph.D. Fund) of Chengdu Technological University

Natural Science Foundation of Sichuan Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3