Detection and Classification of Obstructive Sleep Apnea Using Audio Spectrogram Analysis

Author:

Serrano Salvatore12ORCID,Patanè Luca12ORCID,Serghini Omar1ORCID,Scarpa Marco12ORCID

Affiliation:

1. Laboratory of Digital Signal Processing, Department of Engineering, University of Messina, C.da di Dio, 1 (Vill. S. Agata), 98166 Messina, Italy

2. CNIT Research Unit, Department of Engineering, University of Messina, C.da di Dio, 1 (Vill. S. Agata), 98166 Messina, Italy

Abstract

Sleep disorders are steadily increasing in the population and can significantly affect daily life. Low-cost and noninvasive systems that can assist the diagnostic process will become increasingly widespread in the coming years. This work aims to investigate and compare the performance of machine learning-based classifiers for the identification of obstructive sleep apnea–hypopnea (OSAH) events, including apnea/non-apnea status classification, apnea–hypopnea index (AHI) prediction, and AHI severity classification. The dataset considered contains recordings from 192 patients. It is derived from a recently released dataset which contains, amongst others, audio signals recorded with an ambient microphone placed ∼1 m above the studied subjects and apnea/hypopnea accurate events annotations performed by specialized medical doctors. We employ mel spectrogram images extracted from the environmental audio signals as input of a machine-learning-based classifier for apnea/hypopnea events classification. The proposed approach involves a stacked model which utilizes a combination of a pretrained VGG-like audio classification (VGGish) network and a bidirectional long short-term memory (bi-LSTM) network. Performance analysis was conducted using a 5-fold cross-validation approach, leaving out patients used for training and validation of the models in the testing step. Comparative evaluations with recently presented methods from the literature demonstrate the advantages of the proposed approach. The proposed architecture can be considered a useful tool for supporting OSAHS diagnoses by means of low-cost devices such as smartphones.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3