Autonomous Traffic System for Emergency Vehicles

Author:

Humayun MamoonaORCID,Almufareh Maram Fahhad,Jhanjhi Noor ZamanORCID

Abstract

An emergency can occur at any time. To overcome that emergency efficiently, we require seamless movement on the road to approach the destination within a limited time by using an Emergency Vehicle (EV). This paper proposes an emergency vehicle management solution (EVMS) to determine an efficient vehicle-passing sequence that allows the EV to cross a junction without any delay. The proposed system passes the EV and minimally affects the travel times of other vehicles on the junction. In the presence of an EV in the communication range, the proposed system prioritizes the EV by creating space for it in the lane adjacent to the shoulder lane. The shoulder lane is a lane that cyclists and motorcyclists will use in normal situations. However, when an EV enters the communication range, traffic from the adjacent lane will move to the shoulder lane. As the number of vehicles on the road increases rapidly, crossing the EV in the shortest possible time is crucial. The EVMS and algorithms are presented in this study to find the optimal vehicle sequence that gives EVs the highest priority. The proposed solution uses cutting-edge technologies (IoT Sensors, GPS, 5G, and Cloud computing) to collect and pass EVs’ information to the Roadside Units (RSU). The proposed solution was evaluated through mathematical modeling. The results show that the EVMS can reduce the travel times of EVs significantly without causing any performance degradation of normal vehicles.

Funder

Al Jouf University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3