Abstract
Intrauterine Growth Restriction (IUGR) is a restriction of the fetus that involves the abnormal growth rate of the fetus, and it has a huge impact on the new-born’s health. Machine learning (ML) algorithms can help in early prediction and discrimination of the abnormality of the fetus’ health to assist in reducing the risk during the antepartum period. Therefore, in this study, Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbor (KNN) and Gradient Boosting (GB) was utilized to discriminate whether a fetus was healthy or suffering from IUGR based on the fetal heart rate (FHR). The Recursive Feature Elimination (RFE) method was used to select the significant feature for the classification of fetus. Furthermore, the study Explainable Artificial Intelligence (EAI) was implemented using LIME and SHAP to generate the explanation and to add comprehensibility in the proposed models. The experimental results indicate that RF achieved the highest accuracy (0.97) and F1-score (0.98) with the reduced set of features. However, the SVM outperformed it in terms of Positive Predictive Value (PPV) and specificity (SP). The performance of the model was further validated using another dataset and found that it outperformed the baseline studies for both the datasets. The proposed model can aid doctors in monitoring fetal health and enhancing the prediction process.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference30 articles.
1. Preterm-Birthhttp://www.who.int/en/news-room/fact-sheets/detail/preterm-birth
2. Premature-Birth-Facts-and-Statisticshttps://www.verywellfamily.com/premature-birth-facts-and-statistics-2748469
3. Intrauterine growth restriction
4. Intrauterine growth restriction (IUGR) risk decision based on support vector machines
5. Explainable image analysis for decision support in medical healthcare
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献