Explainable Computational Intelligence Model for Antepartum Fetal Monitoring to Predict the Risk of IUGR

Author:

Aslam NidaORCID,Khan Irfan UllahORCID,Aljishi Reem Fadel,Alnamer Zahra Maher,Alzawad Zahra Majed,Almomen Fatima AbdulmohsenORCID,Alramadan Fatima Abbas

Abstract

Intrauterine Growth Restriction (IUGR) is a restriction of the fetus that involves the abnormal growth rate of the fetus, and it has a huge impact on the new-born’s health. Machine learning (ML) algorithms can help in early prediction and discrimination of the abnormality of the fetus’ health to assist in reducing the risk during the antepartum period. Therefore, in this study, Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbor (KNN) and Gradient Boosting (GB) was utilized to discriminate whether a fetus was healthy or suffering from IUGR based on the fetal heart rate (FHR). The Recursive Feature Elimination (RFE) method was used to select the significant feature for the classification of fetus. Furthermore, the study Explainable Artificial Intelligence (EAI) was implemented using LIME and SHAP to generate the explanation and to add comprehensibility in the proposed models. The experimental results indicate that RF achieved the highest accuracy (0.97) and F1-score (0.98) with the reduced set of features. However, the SVM outperformed it in terms of Positive Predictive Value (PPV) and specificity (SP). The performance of the model was further validated using another dataset and found that it outperformed the baseline studies for both the datasets. The proposed model can aid doctors in monitoring fetal health and enhancing the prediction process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference30 articles.

1. Preterm-Birthhttp://www.who.int/en/news-room/fact-sheets/detail/preterm-birth

2. Premature-Birth-Facts-and-Statisticshttps://www.verywellfamily.com/premature-birth-facts-and-statistics-2748469

3. Intrauterine growth restriction

4. Intrauterine growth restriction (IUGR) risk decision based on support vector machines

5. Explainable image analysis for decision support in medical healthcare

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3