Impact of Cross-Validation on Machine Learning Models for Early Detection of Intrauterine Fetal Demise

Author:

Kaliappan Jayakumar1ORCID,Bagepalli Apoorva Reddy1,Almal Shubh1,Mishra Rishabh1,Hu Yuh-Chung2ORCID,Srinivasan Kathiravan1ORCID

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India

2. Department of Mechanical and Electromechanical Engineering, National ILan University, Yilan 26047, Taiwan

Abstract

Intrauterine fetal demise in women during pregnancy is a major contributing factor in prenatal mortality and is a major global issue in developing and underdeveloped countries. When an unborn fetus passes away in the womb during the 20th week of pregnancy or later, early detection of the fetus can help reduce the chances of intrauterine fetal demise. Machine learning models such as Decision Trees, Random Forest, SVM Classifier, KNN, Gaussian Naïve Bayes, Adaboost, Gradient Boosting, Voting Classifier, and Neural Networks are trained to determine whether the fetal health is Normal, Suspect, or Pathological. This work uses 22 features related to fetal heart rate obtained from the Cardiotocogram (CTG) clinical procedure for 2126 patients. Our paper focuses on applying various cross-validation techniques, namely, K-Fold, Hold-Out, Leave-One-Out, Leave-P-Out, Monte Carlo, Stratified K-fold, and Repeated K-fold, on the above ML algorithms to enhance them and determine the best performing algorithm. We conducted exploratory data analysis to obtain detailed inferences on the features. Gradient Boosting and Voting Classifier achieved 99% accuracy after applying cross-validation techniques. The dataset used has the dimension of 2126 × 22, and the label is multiclass classified as Normal, Suspect, and Pathological condition. Apart from incorporating cross-validation strategies on several machine learning algorithms, the research paper focuses on Blackbox evaluation, which is an Interpretable Machine Learning Technique used to understand the underlying working mechanism of each model and the means by which it picks features to train and predict values.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3