Wi-Fi-Based Location-Independent Human Activity Recognition with Attention Mechanism Enhanced Method

Author:

Ding XueORCID,Jiang TingORCID,Zhong YiORCID,Wu ShengORCID,Yang JianfeiORCID,Zeng Jie

Abstract

Wi-Fi-based human activity recognition is emerging as a crucial supporting technology for various applications. Although great success has been achieved for location-dependent recognition tasks, it depends on adequate data collection, which is particularly laborious and time-consuming, being impractical for actual application scenarios. Therefore, mitigating the adverse impact on performance due to location variations with the restricted data samples is still a challenging issue. In this paper, we provide a location-independent human activity recognition approach. Specifically, aiming to adapt the model well across locations with quite limited samples, we propose a Channel–Time–Subcarrier Attention Mechanism (CTS-AM) enhanced few-shot learning method that fulfills the feature representation and recognition tasks. Consequently, the generalization capability of the model is significantly improved. Extensive experiments show that more than 90% average accuracy for location-independent human activity recognition can be achieved when very few samples are available.

Funder

National Natural Sciences Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of few-shot learning application in CSI human sensing;Artificial Intelligence Review;2024-07-05

2. A Novel Multimodal Human Activity Recognition based on Self-Attention Mechanism;2024 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB);2024-06-19

3. RETRACTED: WIFI based human activity recognition using multi-head adaptive attention mechanism;Journal of Intelligent & Fuzzy Systems;2024-04-26

4. A Novel Lightweight Human Activity Recognition Method Via L-CTCN;Sensors;2023-12-07

5. CSI-Based Location Independent Human Activity Recognition Using Deep Learning;Human-Centric Intelligent Systems;2023-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3