A Novel Lightweight Human Activity Recognition Method Via L-CTCN

Author:

Ding Xue1,Li Zhiwei2,Yu Jinyang1,Xie Weiliang1,Li Xiao1,Jiang Ting2

Affiliation:

1. Mobile and Terminal Technology Research Department, China Telecom Research Institute, Beijing 100876, China

2. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 102209, China

Abstract

Wi-Fi-based human activity recognition has attracted significant attention. Deep learning methods are widely used to achieve feature representation and activity sensing. While more learnable parameters in the neural networks model lead to richer feature extraction, it results in significant resource consumption, rendering the model unsuitable for lightweight Internet of Things (IoT) devices. Furthermore, the sensing performance heavily relies on the quality and quantity of data, which is a time-consuming and labor-intensive task. Therefore, there is a need to explore methods that reduce the dependence on the quality and quantity of the dataset while ensuring recognition performance and decreasing model complexity to adapt to ubiquitous lightweight IoT devices. In this paper, we propose a novel Lightweight-Complex Temporal Convolution Network (L-CTCN) for human activity recognition. Specifically, this approach effectively combines complex convolution with a Temporal Convolution Network (TCN). Complex convolution can extract richer information from limited raw complex data, reducing the reliance on the quality and quantity of training samples. Based on the designed TCN framework with 1D convolution and residual blocks, the proposed model can achieve lightweight human activity recognition. Extensive experiments verify the effectiveness of the proposed method. We can achieve an average recognition accuracy of 96.6% with only 0.17 M parameter size. This method performs well under conditions of low sampling rates and a low number of subcarriers and samples.

Funder

National Natural Sciences Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3