Dynamics Modeling of Bearing with Defect in Modelica and Application in Direct Transfer Learning from Simulation to Test Bench for Bearing Fault Diagnosis

Author:

Ruan Diwang,Chen Yuxiang,Gühmann ClemensORCID,Yan JianpingORCID,Li Zhirou

Abstract

In data-driven bearing fault diagnosis, sufficient fault data are fundamental for algorithm training and validation. However, only very few fault measurements can be provided in most industrial applications, bringing the dynamics model to produce bearing response under defects. This paper built a Modelica model for the whole bearing test rig, including the test bearing, driving motor and hydraulic loading system. First, a five degree-of-freedom (5-DoF) model was proposed for the test bearing to identify the normal bearing dynamics. Next, a fault model was applied to characterize the defect position, defect size, defect shape and multiple defects. The virtual bearing test bench was first developed with OpenModelica and then called in Python with OMPython. For validation of the positive effect of the dynamics model in the direct transfer learning for bearing fault diagnosis, the simulation data from the Modelica model and experimental data from the Case Western Reserve University were fed separately or jointly to train a Convolution Neural Network (CNN). Then the well-trained CNN was transferred directly to achieve the fault diagnosis under the test set consisting of experiment data. Additionally, 157 features were extracted from both time-domain and frequency-domain and fed into CNN as input, and then four different validation cases were designed. The results confirmed the positive effect of simulation data in the CNN transfer learning, especially when the simulation data were added as auxiliary to experimental data, and improved CNN classification accuracy. Furthermore, it indicated that the simulation data from the bearing dynamics model could play a part in the actual experimental measurement when the collected data were insufficient.

Funder

China Scholarship Council

Zhejiang Lab's International Talent Fund for Young Professionals

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3