Author:
Han Shi-Yuan,Sun Qi-Wei,Yang Xiao-Hui,Han Rui-Zhi,Zhou Jin,Chen Yue-Hui
Abstract
By linking computational intelligence technology directly to urban transportation systems, a framework for scheduling traffic lights is proposed to enhance their flexibility in adaptation to traffic fluctuation. First, based on the flexible neural tree (FNT) theory, an algorithm for predicting the traffic flow is designed to obtain the variance tendency of traffic load. After that, a strategy for adjusting the duration of traffic signal cycle is designed to tackle the problem of overload or lightweight traffic flow in the next-time frame. While predetermining the duration of signal cycle in the next-time frame, from a utilization perspective, an elastic-adaption strategy for scheduling the separate phase’s green traffic lights is derived from the analytical solution, which is obtained from a designed trade-off scheduling optimization problem to increase the adaptability for the upcoming traffic flow. The experiment results show that the proposed framework can effectively reduce the delay and stopping rate of vehicles, and improves the adaptability for the upcoming traffic flow.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province for Key Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献