Abstract
Given the complexity of real-world datasets, it is difficult to present data structures using existing deep learning (DL) models. Most research to date has concentrated on datasets with only one type of attribute: categorical or numerical. Categorical data are common in datasets such as the German (-categorical) credit scoring dataset, which contains numerical, ordinal, and nominal attributes. The heterogeneous structure of this dataset makes very high accuracy difficult to achieve. DL-based methods have achieved high accuracy (99.68%) for the Wisconsin Breast Cancer Dataset, whereas DL-inspired methods have achieved high accuracy (97.39%) for the Australian credit dataset. However, to our knowledge, no such method has been proposed to classify the German credit dataset. This study aimed to provide new insights into the reasons why DL-based and DL-inspired classifiers do not work well for categorical datasets, mainly consisting of nominal attributes. We also discuss the problems associated with using nominal attributes to design high-performance classifiers. Considering the expanded utility of DL, this study's findings should aid in the development of a new type of DL that can handle categorical datasets consisting of mainly nominal attributes, which are commonly used in risk evaluation, finance, banking, and marketing.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献