The Existence of A Priori Distinctions Between Learning Algorithms

Author:

Wolpert David H.1

Affiliation:

1. The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, 87501, USA

Abstract

This is the second of two papers that use off-training set (OTS) error to investigate the assumption-free relationship between learning algorithms. The first paper discusses a particular set of ways to compare learning algorithms, according to which there are no distinctions between learning algorithms. This second paper concentrates on different ways of comparing learning algorithms from those used in the first paper. In particular this second paper discusses the associated a priori distinctions that do exist between learning algorithms. In this second paper it is shown, loosely speaking, that for loss functions other than zero-one (e.g., quadratic loss), there are a priori distinctions between algorithms. However, even for such loss functions, it is shown here that any algorithm is equivalent on average to its “randomized” version, and in this still has no first principles justification in terms of average error. Nonetheless, as this paper discusses, it may be that (for example) cross-validation has better head-to-head minimax properties than “anti-cross-validation” (choose the learning algorithm with the largest cross-validation error). This may be true even for zero-one loss, a loss function for which the notion of “randomization” would not be relevant. This paper also analyzes averages over hypotheses rather than targets. Such analyses hold for all possible priors over targets. Accordingly they prove, as a particular example, that cross-validation cannot be justified as a Bayesian procedure. In fact, for a very natural restriction of the class of learning algorithms, one should use anti-cross-validation rather than cross-validation (!).

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Malware Prediction Using Tabular Deep Learning Models;Advances in Intelligent Systems and Computing;2024

2. References;Reconstructing Olduvai;2024

3. Impossibility Results in AI: A Survey;ACM Computing Surveys;2023-08-25

4. The Implications of the No-Free-Lunch Theorems for Meta-induction;Journal for General Philosophy of Science;2023-03-13

5. Using machine learning on tree‐ring data to determine the geographical provenance of historical construction timbers;Ecosphere;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3