Abstract
For the development and application of GaN-based nanowire structures, it is crucial to understand their fundamental properties. In this work, we provide the nano-scale correlation of the morphological, electrical, and optical properties of GaN/AlGaN nanowire light emitting diodes (LEDs), observed using a combination of spatially and spectrally resolved cathodoluminescence spectroscopy and imaging, electron beam-induced current microscopy, the nano-probe technique, and scanning electron microscopy. To complement the results, the photo- and electro-luminescence were also studied. The interpretation of the experimental data was supported by the results of numerical simulations of the electronic band structure. We characterized two types of nanowire LEDs grown in one process, which exhibit top facets of different shapes and, as we proved, have opposite growth polarities. We show that switching the polarity of nanowires (NWs) from the N- to Ga-face has a significant impact on their optical and electrical properties. In particular, cathodoluminescence studies revealed quantum wells emissions at about 3.5 eV, which were much brighter in Ga-polar NWs than in N-polar NWs. Moreover, the electron beam-induced current mapping proved that the p–n junctions were not active in N-polar NWs. Our results clearly indicate that intentional polarity inversion between the n- and p-type parts of NWs is a potential path towards the development of efficient nanoLED NW structures.
Funder
Narodowe Centrum Nauki
Narodowe Centrum Badań i Rozwoju
Fundacja na rzecz Nauki Polskiej
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference68 articles.
1. III-Nitride Based Light Emitting Diodes and Applications;Seong,2013
2. Nitride Semiconductor Light-Emitting Diodes (LEDs);Huang,2013
3. Review—Progress in High Performance III-Nitride Micro-Light-Emitting Diodes
4. Group III Nitrides;Romualdo,2017
5. III nitrides and UV detection
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献