Abstract
Abstract
Silicon-based gallium nitride lasers are considered potential laser sources for on-chip integration. However, the capability of on-demand lasing output with its reversible and wavelength tunability remains important. Herein, a Benz-shaped GaN cavity is designed and fabricated on a Si substrate and coupled to a Ni metal wire. Under optical pumping, excitation position-related lasing and exciton combination properties of pure GaN cavity are studied systematically. Under electrically driven, joule thermal of Ni metal wire makes it easy to change the temperature of the cavity. And then, we demonstrate a joule heat-induced contactless lasing mode manipulation in the coupled GaN cavity. The driven current, coupling distance, and excitation position influence the wavelength tunable effect. Compared with other positions, the outer ring position has the highest lasing properties and lasing mode tuning abilities. The optimized structures demonstrate clear wavelength tuning and an even mode switch. The thermal reduction of the band gap is identified to account for the modification of the lasing profile, but the thermo-optic effect is non-negligible under a high-driven current.
Funder
2021 Jiangsu Graduate Research and Practice Innovation Plan
Double-Innovation Doctor Program
Natural Science Foundation of Jiangsu Province
the National Natural Science Foundation of China
the Open Research Fund of the Key Lab of Broadband Wireless Communication and Sensor Network Technology
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献