Lasing mode manipulation in a Benz-shaped GaN cavity via the Joule effect of individual Ni wires

Author:

Qin Feifei,Ji Xin,Yang Ying,Li Meng,Li Xin,Lin Yi,Lu Kerui,Wang Ru,Wang Xiaoxuan,Wang YongjinORCID,Zhu GangyiORCID

Abstract

Abstract Silicon-based gallium nitride lasers are considered potential laser sources for on-chip integration. However, the capability of on-demand lasing output with its reversible and wavelength tunability remains important. Herein, a Benz-shaped GaN cavity is designed and fabricated on a Si substrate and coupled to a Ni metal wire. Under optical pumping, excitation position-related lasing and exciton combination properties of pure GaN cavity are studied systematically. Under electrically driven, joule thermal of Ni metal wire makes it easy to change the temperature of the cavity. And then, we demonstrate a joule heat-induced contactless lasing mode manipulation in the coupled GaN cavity. The driven current, coupling distance, and excitation position influence the wavelength tunable effect. Compared with other positions, the outer ring position has the highest lasing properties and lasing mode tuning abilities. The optimized structures demonstrate clear wavelength tuning and an even mode switch. The thermal reduction of the band gap is identified to account for the modification of the lasing profile, but the thermo-optic effect is non-negligible under a high-driven current.

Funder

2021 Jiangsu Graduate Research and Practice Innovation Plan

Double-Innovation Doctor Program

Natural Science Foundation of Jiangsu Province

the National Natural Science Foundation of China

the Open Research Fund of the Key Lab of Broadband Wireless Communication and Sensor Network Technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrical single mode switching in coupled microcavity;Applied Physics Letters;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3