LSTM Networks for Overcoming the Challenges Associated with Photovoltaic Module Maintenance in Smart Cities

Author:

Vicente-Gabriel JorgeORCID,Gil-González Ana-BelénORCID,Luis-Reboredo AnaORCID,Chamoso PabloORCID,Corchado Juan M.ORCID

Abstract

Predictive maintenance is a field of research that has emerged from the need to improve the systems in place. This research focuses on controlling the degradation of photovoltaic (PV) modules in outdoor solar panels, which are exposed to a variety of climatic loads. Improved reliability, operation, and performance can be achieved through monitoring. In this study, a system capable of predicting the output power of a solar module was implemented. It monitors different parameters and uses automatic learning techniques for prediction. Its use improved reliability, operation, and performance. On the other hand, automatic learning algorithms were evaluated with different metrics in order to optimize and find the best configuration that provides an optimal solution to the problem. With the aim of increasing the share of renewable energy penetration, an architectural proposal based on Edge Computing was included to implement the proposed model into a system. The proposed model is designated for outdoor predictions and offers many advantages, such as monitoring of individual panels, optimization of system response, and speed of communication with the Cloud. The final objective of the work was to contribute to the smart Energy system concept, providing solutions for planning the entire energy system together with the identification of suitable energy infrastructure designs and operational strategies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3