Global Climate Data Processing and Mapping of Degradation Mechanisms and Degradation Rates of PV Modules

Author:

Ascencio-Vásquez JuliánORCID,Kaaya IsmailORCID,Brecl KristijanORCID,Weiss Karl-Anders,Topič MarkoORCID

Abstract

Photovoltaic (PV) systems are the cheapest source of electricity in sunny locations and nearly all European countries. However, the fast deployment of PV systems around the world is bringing uncertainty to the PV community in terms of the reliability and long-term performance of PV modules under different climatic stresses, such as irradiation, temperature changes, and humidity. Methodologies and models to estimate the annual degradation rates of PV modules have been studied in the past, yet, an evaluation of the issue at global scale has not been addressed so far. Hereby, we process the ERA5 climate re-analysis dataset to extract and model the climatic stresses necessary for the calculation of degradation rates. These stresses are then applied to evaluate three degradation mechanisms (hydrolysis-degradation, thermomechanical-degradation, and photo- degradation) and the total degradation rate of PV modules due to the combination of temperature, humidity, and ultraviolet irradiation. Further on, spatial distribution of the degradation rates worldwide is computed and discussed proving direct correlation with the Köppen-Geiger-Photovoltaic climate zones, showing that the typical value considered for the degradation rate on PV design and manufacturer warranties (i.e., 0.5%/a) can vary ± 0.3%/a in the temperate zones of Europe and rise up to 1.5%/a globally. The mapping of degradation mechanisms and total degradation rates is provided for a monocrystalline silicon PV module. Additionally, we analyze the temporal evolution of degradation rates, where a global degradation rate is introduced and its dependence on global ambient temperature demonstrated. Finally, the categorization of degradation rates is made for Europe and worldwide to facilitate the understanding of the climatic stresses.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3