Efficient Memory Organization for DNN Hardware Accelerator Implementation on PSoC

Author:

Rios-Navarro AntonioORCID,Gutierrez-Galan DanielORCID,Dominguez-Morales Juan PedroORCID,Piñero-Fuentes EnriqueORCID,Duran-Lopez LourdesORCID,Tapiador-Morales RicardoORCID,Dominguez-Morales Manuel JesúsORCID

Abstract

The use of deep learning solutions in different disciplines is increasing and their algorithms are computationally expensive in most cases. For this reason, numerous hardware accelerators have appeared to compute their operations efficiently in parallel, achieving higher performance and lower latency. These algorithms need large amounts of data to feed each of their computing layers, which makes it necessary to efficiently handle the data transfers that feed and collect the information to and from the accelerators. For the implementation of these accelerators, hybrid devices are widely used, which have an embedded computer, where an operating system can be run, and a field-programmable gate array (FPGA), where the accelerator can be deployed. In this work, we present a software API that efficiently organizes the memory, preventing reallocating data from one memory area to another, which improves the native Linux driver with a 85% speed-up and reduces the frame computing time by 28% in a real application.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference21 articles.

1. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection

2. Recurrent Neural Network Control of a Hybrid Dynamic Transfemoral Prosthesis with EdgeDRNN Accelerator;Gao;arXiv,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3