Drift Adaptive Online DDoS Attack Detection Framework for IoT System

Author:

Beshah Yonas Kibret1,Abebe Surafel Lemma2ORCID,Melaku Henock Mulugeta1ORCID

Affiliation:

1. School of Information Technology and Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa 1000, Ethiopia

2. School of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa 1000, Ethiopia

Abstract

Internet of Things (IoT) security is becoming important with the growing popularity of IoT devices and their wide applications. Recent network security reports revealed a sharp increase in the type, frequency, sophistication, and impact of distributed denial of service (DDoS) attacks on IoT systems, making DDoS one of the most challenging threats. DDoS is used to commit actual, effective, and profitable cybercrimes. The current machine learning-based IoT DDoS attack detection systems use batch learning techniques, and hence are unable to maintain their performance over time in a dynamic environment. The dynamicity of heterogeneous IoT data causes concept drift issues that result in performance degradation and automation difficulties in detecting DDoS. In this study, we propose an adaptive online DDoS attack detection framework that detects and adapts to concept drifts in streaming data using a number of features often used in DDoS attack detection. This paper also proposes a novel accuracy update weighted probability averaging ensemble (AUWPAE) approach to detect concept drift and optimize zero-day DDoS detection. We evaluated the proposed framework using IoTID20 and CICIoT2023 dataset containing benign and DDoS traffic data. The results show that the proposed adaptive online DDoS attack detection framework is able to detect DDoS attacks with an accuracy of 99.54% and 99.33% for the respective datasets.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3