A Flexible Nickel-Oxide-Based RRAM Device Prepared Using the Solution Combustion Method

Author:

Huang Jingjing12,Wang Hanbin12,Ma Guokun12,Wan Houzhao12,Rao Yiheng12,Shen Liangping12,Wang Hao12

Affiliation:

1. Hubei Yangtze Memory Laboratories, Wuhan 430205, China

2. Institute of Microelectronics and Integrated Circuits, School of Microelectronics, Hubei University, Wuhan 430062, China

Abstract

Binary metal oxide materials, such as nickel oxide, are widely used in flexible resistive variable memory devices due to advantages such as their easily controllable material composition, simple structural composition, and good compatibility between manufacturing processes and complementary metal oxide processes. In this work, a solution combustion method was employed to prepare NiOx thin films for use as a resistive switching layer of resistance random-access memory. The formation temperature of the NiOx layer in the RRAM device was kept as low as 175 °C, making the device compatible with flexible substrates. With polyethylene naphthalenediate as the substrate, the NiOx-based RRAM exhibited obvious bipolar resistance-switching properties, superb bending resistance, and good stability. Through theoretical fitting and structural characterization, the conduction mechanisms were attributed to the combination of the space-charge-limited current and Ohmic mechanisms, while the valence change mechanism was determined to be the resistive switching mechanism. This study demonstrates a low-temperature and scalable approach to constructing NiOx-based RRAM devices on flexible substrates.

Funder

Science and Technology Major Project of Hubei

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3