Energy-Efficient Edge Caching and Task Deployment Algorithm Enabled by Deep Q-Learning for MEC

Author:

Ma Li,Wang PengORCID,Du Chunlai,Li YangORCID

Abstract

Container technology enables rapid deployment of computing services, while edge computing reduces the latency of task computing and improves performance. However, there are limits to the types, number and performance of containers that can be supported by different edge servers, and a sensible task deployment strategy and rapid response to the policy is a must. Therefore, by jointly optimizing the strategies of task deployment, offloading decisions, edge cache and resource allocation, this paper aims to minimize the overall energy consumption of a mobile edge computing (MEC) system composed of multiple mobile devices (MD) and multiple edge servers integrated with different containers. The problem is formalized as a combinatorial optimization problem containing multiple discrete variables when constraints of container type, transmission power, latency, task offloading and deployment strategies are satisfied. To solve the NP-hard problem and achieve fast response for sub-optimal policy, this paper proposes an energy-efficient edge caching and task deployment policy based on Deep Q-Learning (DQCD). Firstly, the pruning and optimization of the exponential action space consisting of offloading decisions, task deployment and caching policy is completed to accelerate the training of the model. Then, the iterative optimization of the training model is completed using a deep neural network. Finally, the sub-optimal task deployment, offloading and caching policies are obtained based on the training model. Simulation results demonstrate that the proposed algorithm is able to converge the model in very few iterations and results in a great improvement in terms of reducing system energy consumption and policy response delay compared to other algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3