Integral Windup Resetting Enhancement for Sliding Mode Control of Chemical Processes with Longtime Delay

Author:

Prado Alvaro JavierORCID,Herrera MarcoORCID,Dominguez XavierORCID,Torres Jose,Camacho OscarORCID

Abstract

The effects of the windup phenomenon impact the performance of integral controllers commonly found in industrial processes. In particular, windup issues are critical for controlling variable and longtime delayed systems, as they may not be timely corrected by the tracking error accumulation and saturation of the actuators. This work introduces two anti-windup control algorithms for a sliding mode control (SMC) framework to promptly reset the integral control action in the discontinuous mode without inhibiting the robustness of the overall control system against disturbances. The proposed algorithms are intended to anticipate and steer the tracking error toward the origin region of the sliding surface based on an anti-saturation logistic function and a robust compensation action fed by system output variations. Experimental results show the effectiveness of the proposed algorithms when they are applied to two chemical processes, i.e., (i) a Variable Height Mixing Tank (VHMT) and (ii) Continuous Stirred Tank Reactor (CSTR) with a variable longtime delay. The control performance of the proposed anti-windup approaches has been assessed under different reference and disturbance changes, exhibiting that the tracking control performance in the presence of disturbances is enhanced up to 24.35% in terms of the Integral Square Error (ISE) and up to 88.7% regarding the Integral Time Square Error (ITSE). Finally, the results of the proposed methodology demonstrated that the excess of cumulative energy by the actuator saturation could reduce the process resources and also extend the actuator’s lifetime span.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3