CNN-Based Fluid Motion Estimation Using Correlation Coefficient and Multiscale Cost Volume

Author:

Chen JunORCID,Duan Hui,Song Yuanxin,Tang Ming,Cai Zemin

Abstract

Motion estimation for complex fluid flows via their image sequences is a challenging issue in computer vision. It plays a significant role in scientific research and engineering applications related to meteorology, oceanography, and fluid mechanics. In this paper, we introduce a novel convolutional neural network (CNN)-based motion estimator for complex fluid flows using multiscale cost volume. It uses correlation coefficients as the matching costs, which can improve the accuracy of motion estimation by enhancing the discrimination of the feature matching and overcoming the feature distortions caused by the changes of fluid shapes and illuminations. Specifically, it first generates sparse seeds by a feature extraction network. A correlation pyramid is then constructed for all pairs of sparse seeds, and the predicted matches are iteratively updated through a recurrent neural network, which lookups a multi-scale cost volume from a correlation pyramid via a multi-scale search scheme. Then it uses the searched multi-scale cost volume, the current matches, and the context features as the input features to correlate the predicted matches. Since the multi-scale cost volume contains motion information for both large and small displacements, it can recover small-scale motion structures. However, the predicted matches are sparse, so the final flow field is computed by performing a CNN-based interpolation for these sparse matches. The experimental results show that our method significantly outperforms the current motion estimators in capturing different motion patterns in complex fluid flows, especially in recovering some small-scale vortices. It also achieves state-of-the-art evaluation results on the public fluid datasets and successfully captures the storms in Jupiter’s White Ovals from the remote sensing images.

Funder

National Natural Science Foundation

the Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3