Grid-Related Fine Action Segmentation Based on an STCNN-MCM Joint Algorithm during Smart Grid Training

Author:

Liu Yong1,Zhan Weiwen1,Li Yuan2,Li Xingrui1,Guo Jingkai1,Chen Xiaoling3

Affiliation:

1. School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China

2. School of Physical Education, China University of Geosciences, Wuhan 430074, China

3. School of Art and Media, China University of Geosciences, Wuhan 430074, China

Abstract

Smart grid-training systems enable trainers to achieve the high safety standards required for power operation. Effective methods for the rational segmentation of continuous fine actions can improve smart grid-training systems, which is of great significance to sustainable power-grid operation and the personal safety of operators. In this paper, a joint algorithm of a spatio-temporal convolutional neural network and multidimensional cloud model (STCNN-MCM) is proposed to complete the segmentation of fine actions during power operation. Firstly, the spatio-temporal convolutional neural network (STCNN) is used to extract action features from the multi-sensor dataset of hand actions during power operation and to predict the next moment’s action to form a multi-outcome dataset; then, a multidimensional cloud model (MCM) is designed based on the motion features of the real power operation; finally, the corresponding probabilities are obtained from the distribution of the predicted data in the cloud model through the multi-outcome dataset for action-rsegmentation point determination. The results show that STCNN-MCM can choose the segmentation points of fine actions in power operation in a relatively efficient way, improve the accuracy of action division, and can be used to improve smart grid-training systems for the segmentation of continuous fine actions in power operation.

Funder

Mountaineering Management Center of the General Administration of Sport of China’s critical project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3