Periodic Signal Suppression in Position Domain Based on Repetitive Control

Author:

Li HaitaoORCID,Chen XiangwenORCID,Xiang BiaoORCID,Wang Xiaoyu

Abstract

In this paper, a periodic signal suppression method in position domain based on repetitive control (RC) is proposed to realize high-precision speed control for the gimbal servo system of the single gimbal control moment gyro (SGCMG). To reduce the volume and weight while outputting large torque, the gimbal servo system usually needs to install the harmonic drive. However, the nonlinear transmission characteristics of the harmonic drive are also introduced into the gimbal servo system and make the speed fluctuate. Considering the speed fluctuation signal shown as a fixed frequency in the position domain, a position domain RC method combined with acceleration feedback is designed to realize the speed fluctuation minimization. The position domain RC improves the dynamic characteristics, while the acceleration feedback increases the damping of the system. To analyze the stability, the position domain RC is converted into the time domain through the domain transformation method, and a phase compensator is designed to improve the stability and increase the bandwidth of the position domain RC by compensating for the phase lag of the middle and low frequency, respectively. The feasibility and effectiveness of the proposed method are verified by the simulation and experimental results. These results illustrate that after applying the proposed approach, the output speed fluctuation and harmonic components decrease more than 20% and 24.1%, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3