Segmentation of Echocardiography Based on Deep Learning Model

Author:

Huang Helin,Ge ZhenyiORCID,Wang Hairui,Wu Jing,Hu Chunqiang,Li Nan,Wu Xiaomei,Pan Cuizhen

Abstract

In order to achieve the classification of mitral regurgitation, a deep learning network VDS-UNET was designed to automatically segment the critical regions of echocardiography with three sections of apical two-chamber, apical three-chamber, and apical four-chamber. First, an expert-labeled dataset of 153 echocardiographic videos and 2183 images from 49 subjects was constructed. Then, the convolution layer in the VGG16 network was used to replace the contraction path in the original UNet network to extract image features, and depth supervision was added to the expansion path to achieve the segmentation of LA, LV, and MV. The results showed that the Dice coefficients of LA, LV, and MV were 0.935, 0.915, and 0.757, respectively. The proposed deep learning network can achieve simultaneous and accurate segmentation of LA, LV, and MV in multi-section echocardiography, laying a foundation for quantitative measurement of clinical parameters related to mitral regurgitation.

Funder

National Natural Science Foundation of China

Shanghai Municipal Commission of economy and information technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3