Comparative Eminence: Foundation versus Domain-Specific Model for Cardiac Ultrasound Segmentation

Author:

Chao Chieh-JuORCID,Gu Yunqi Richard,Xiang Tiange,Appari Lalith,Wu Justin,Farina Juan M.,Wraith Rachael,Jeong Jiwoon,Arsanjani Reza,Kane Garvan C.,Oh Jae K.,Langlotz Curtis P.,Banerjee Imon,Fei-Fei Li,Adeli Ehsan

Abstract

AbstractImportanceA recently developed vision foundation model, “Segment Anything (SAM),” promises to segment any objects in images. However, the performance of SAM on clinical echocardiography images is yet to be investigated and compared against the domain-specific models.ObjectiveTo evaluate the performance of SAM on transthoracic echocardiography (TTE) and point-of-care ultrasound (POCUS) images.DesignSAM was fine-tuned on the training set of EchoNet-Dynamic (TTE) and then evaluated on datasets containing TTE and POCUS images.SettingMulti-center, retrospective cohort study.ParticipantsThis study used two publicly available datasets (EchoNet-dynamic, Stanford University and CAMUS, University Hospital of St Etienne). The Mayo Clinic dataset contains a sample of 99 non-duplicated patients (58 TTE and 41 POCUS).Intervention/Exposurenot applicable.Main Outcomes and MeasuresModel segmentation performance: Dice similarity coefficient (DSC).ResultsFine-tuned SAM had promising frame-level performance (SAM vs. EchoNet: DSC 0.911 ± 0.045 vs. 0.915 ± 0.047, p<0.0001), and consistent performance on the external datasets including TTE (Mayo Clinic: DSC 0.902 ± 0.032 vs. 0.893 ± 0.090, p<0.0001, CAMUS-A4C: DSC 0.897 ± 0.036 vs. 0.850 ± 0.097, p<0.0001, CAMUS-A2C: DSC 0.891 ± 0.040 vs. 0.752 ± 0.196, p<0.0001) and POCUS (DSC 0.857 ± 0.047 vs. 0.667 ± 0.279, p<0.0001).Conclusions and RelevancePromising segmentation performance was observed after fine-tuning the SAM model on TTE. The strong generalization capability of SAM can facilitate the development of AI applications in cardiac ultrasound with less manual data curation.Key pointsQuestionWhat is the comparative performance of fine-tuned Segment Anything Model (SAM) against domain-specific segmentation model on transthoracic echocardiography (TTE) and point-of-care ultrasound (POCUS)?FindingsFine-tuned SAM had excellent performance on EchoNet dataset (SAM vs. EchoNet: DSC 0.911 ± 0.045 vs. 0.915 ± 0.047, p<0.0001) and generalized well on external datasets containing TTE (Mayo TTE: DSC 0.902 ± 0.032 vs. 0.893 ± 0.090, p<0.0001) and POCUS (DSC 0.857 ± 0.047 vs. 0.667 ± 0.279, p<0.0001).MeaningThe generalization capability of SAM can facilitate the development of AI applications in echocardiography and POCUS with minimal expert data curation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3