A Three-Layered Multifactorial Evolutionary Algorithm with Parallelization for Large-Scale Engraving Path Planning

Author:

Liang Antian,Yang Hanshi,Sun Liming,Sun Meng

Abstract

Today, although laser engraving technology is widely used in 2D image engraving, when the image is larger and more complicated, most existing algorithms for engraving path planning have a huge computational burden and reduced engraving efficiency. Accordingly, this article addresses the trajectory optimization problem in large-scale image engraving. First, we formulate the problem as an improved model based on the large-scale traveling salesman problem (TSP). Then, we propose a three-layered algorithm called 3L-MFEA-MP, structured as follows: an upper layer, the genetic algorithm (GA); a middle layer, the GA; and a bottom layer, the parallel multifactorial evolutionary algorithm. Experiments on four classic large-scale TSP datasets show that our algorithm exhibits superior performance in terms of the path length and engraving time compared with other algorithms. In particular, compared with the single-thread algorithm, the proposed parallel algorithm reduced the engraving time by 80%. Moreover, the engraving machine experiment demonstrated that the engraving time of our algorithm on mona-lisa 100K, vangogh 120K, and venus 140K was approximately one tenth that of the traditional dot engraving method. The results indicate that the proposed algorithm can reduce the computational burden and improve engraving efficiency in engraving path planning.

Funder

National National College Students' innovation and entrepreneurship training program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference29 articles.

1. Effect of Laser Cutting on Core Losses in Electrical Machines—Measurements and Modeling

2. The Traveling Salesman Problem and Its Variations,2006

3. In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation;Cook,2011

4. A New Tour Construction Algorism and its Application in Laser Carving Path Control;Ruan;J. Image Graph.,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3