A Review on Different State of Battery Charge Estimation Techniques and Management Systems for EV Applications

Author:

T Girijaprasanna,C Dhanamjayulu

Abstract

Electric vehicles (EVs) have acquired significant popularity in recent decades due to their performance and efficiency. EVs are already largely acknowledged as the most promising solutions to global environmental challenges and CO2 emissions. Li-ion batteries are most frequently employed in EVs due to their various benefits. An effective Battery Management System (BMS) is essential to improve the battery performance, including charging–discharging control, precise monitoring, heat management, battery safety, and protection, and also an accurate estimation of the State of Charge (SOC). The SOC is required to provide the driver with a precise indication of the remaining range. At present, different types of estimation algorithms are available, but they still have several challenges due to their performance degradation, complex electrochemical reactions, and inaccuracy. The estimating techniques, average error, advantages, and disadvantages were examined methodically and independently for this paper. The article presents advanced SOC estimating techniques, such as LSTM, GRU, and CNN-LSMT, and hybrid techniques to estimate the average error of the SOC. A detailed comparison is presented with merits and demerits, which helped the researchers in the implementation of EV applications. This research also identified several factors, challenges, and potential recommendations for an enhanced BMS and efficient estimating approaches for future sustainable EV applications.

Funder

Vellore Institute of Technology University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3