Adaptive Online State of Charge Estimation of EVs Lithium-Ion Batteries with Deep Recurrent Neural Networks

Author:

Javid Gelareh,Ould Abdeslam DjaffarORCID,Basset Michel

Abstract

The State of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries. In this paper, a Robust Adaptive Online Long Short-Term Memory (RoLSTM) method is proposed to extract SOC estimation for Li-ion Batteries in Electric Vehicles (EVs). This real-time, as its name suggests, method is based on a Recurrent Neural Network (RNN) containing Long Short-Term Memory (LSTM) units and using the Robust and Adaptive online gradient learning method (RoAdam) for optimization. In the proposed architecture, one sequential model is defined for each of the three inputs: voltage, current, and temperature of the battery. Therefore, the three networks work in parallel. With this approach, the number of LSTM units are reduced. Using this suggested method, one is not dependent on precise battery models and can avoid complicated mathematical methods. In addition, unlike the traditional recursive neural network where content is re-written at any time, the LSTM network can decide on preserving the current memory through the proposed gateways. In that case, it can easily transfer this information over long paths to receive and maintain long-term dependencies. Using real databases, the experiment results illustrate the better performance of RoLSTM applied to SOC estimation of Li-Ion batteries in comparison with a neural network modeling and unscented Kalman filter method that have been used thus far.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3