Low-Cost, Open Source IoT-Based SCADA System Design Using Thinger.IO and ESP32 Thing

Author:

Aghenta Lawrence OriagheORCID,Iqbal Mohammad Tariq

Abstract

Supervisory Control and Data Acquisition (SCADA) is a technology for monitoring and controlling distributed processes. SCADA provides real-time data exchange between a control/monitoring centre and field devices connected to the distributed processes. A SCADA system performs these functions using its four basic elements: Field Instrumentation Devices (FIDs) such as sensors and actuators which are connected to the distributed process plants being managed, Remote Terminal Units (RTUs) such as single board computers for receiving, processing and sending the remote data from the field instrumentation devices, Master Terminal Units (MTUs) for handling data processing and human machine interactions, and lastly SCADA Communication Channels for connecting the RTUs to the MTUs, and for parsing the acquired data. Generally, there are two classes of SCADA hardware and software; Proprietary (Commercial) and Open Source. In this paper, we present the design and implementation of a low-cost, Open Source SCADA system by using Thinger.IO local server IoT platform as the MTU and ESP32 Thing micro-controller as the RTU. SCADA architectures have evolved over the years from monolithic (stand-alone) through distributed and networked architectures to the latest Internet of Things (IoT) architecture. The SCADA system proposed in this work is based on the Internet of Things SCADA architecture which incorporates web services with the conventional (traditional) SCADA for a more robust supervisory control and monitoring. It comprises of analog Current and Voltage Sensors, the low-power ESP32 Thing micro-controller, a Raspberry Pi micro-controller, and a local Wi-Fi Router. In its implementation, the current and voltage sensors acquire the desired data from the process plant, the ESP32 micro-controller receives, processes and sends the acquired sensor data via a Wi-Fi network to the Thinger.IO local server IoT platform for data storage, real-time monitoring and remote control. The Thinger.IO server is locally hosted by the Raspberry Pi micro-controller, while the Wi-Fi network which forms the SCADA communication channel is created using the Wi-Fi Router. In order to test the proposed SCADA system solution, the designed hardware was set up to remotely monitor the Photovoltaic (PV) voltage, current, and power, as well as the storage battery voltage of a 260 W, 12 V Solar PV System. Some of the created Human Machine Interfaces (HMIs) on Thinger.IO Server where an operator can remotely monitor the data in the cloud, as well as initiate supervisory control activities if the acquired data are not in the expected range, using both a computer connected to the network, and Thinger.IO Mobile Apps are presented in the paper.

Funder

NSERC Energy Storage Technology Network

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference43 articles.

1. Supervisory Control and Data Acquisitionhttps://realpars.com/scada/

2. Industrial Automation and Controlhttps://www.schneider-electric.com/en/work/products/industrial-automation-control/

3. Telemetry/SCADA Open Systems vs Proprietary Systemshttps://www.abbey.co.nz/telemetry--scada-open-vs-proprietary-systems-2003.html

4. SCADA: Supervisory Control and Data Acquisition;Boyer,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3