High-Accuracy Parameter Identification Method for Equivalent-Circuit Models of Lithium-Ion Batteries Based on the Stochastic Theory Response Reconstruction

Author:

Wen FazhengORCID,Duan BinORCID,Zhang ChenghuiORCID,Zhu Rui,Shang Yunlong,Zhang JunmingORCID

Abstract

The precision of battery modeling is usually determined by the identification of model parameters, which is dependent on the measured outside characteristic data of batteries. However, there is a lot of noise because of the environment noise and measurement error, leading to poor estimation accuracy of model parameters. This paper proposes a stochastic theory response reconstruction (STRR) method to reconstruct the measured battery voltage data, which can eliminate the noise interference and ensure high-precision model parameter identification. The relationship between the battery voltage and current is established based on the the second-order equivalent circuit model (ECM) by the convolution theorem, and the impulse function is calculated by the correlation function between the measured voltage and current. Then, the battery voltage is reconstructed and used to identify model parameters with the recursive least squares (RLS) algorithm. All data for model parameter identification is produced through the pseudo random binarysequence (PRBS) excitation signal. Finally, the Urban Dynamometer Driving Schedule (UDDS) and Federal Urban Driving Schedule (FUDS) tests are conducted to validate the performance of the proposed method. Experimental results show that when compared with the traditional solution using low-pass filter, the proposed method can eliminate the noise interference more effectively and has higher identification accuracy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Foundation of State Key Laboratory of Automotive Simulation and Control

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3