Optimized Proportional-Integral-Derivative Controller for Upper Limb Rehabilitation Robot

Author:

Joyo M. KamranORCID,Raza Yarooq,Ahmed S. Faiz,Billah M. M.,Kadir Kushsairy,Naidu Kanendra,Ali Athar,Mohd Yusof Zukhairi

Abstract

This paper proposes a nature inspired, meta-heuristic optimization technique to tune a proportional-integral-derivative (PID) controller for a robotic arm exoskeleton RAX-1. The RAX-1 is a two-degrees-of-freedom (2-DOFs) upper limb rehabilitation robotic system comprising two joints to facilitate shoulder joint movements. The conventional tuning of PID controllers using Ziegler-Nichols produces large overshoots which is not desirable for rehabilitation applications. To address this issue, nature inspired algorithms have recently been proposed to improve the performance of PID controllers. In this study, a 2-DOF PID control system is optimized offline using particle swarm optimization (PSO) and artificial bee colony (ABC). To validate the effectiveness of the proposed ABC-PID method, several simulations were carried out comparing the ABC-PID controller with the PSO-PID and a classical PID controller tuned using the Zeigler-Nichols method. Various investigations, such as determining system performance with respect to maximum overshoot, rise and settling time and using maximum sensitivity function under disturbance, were carried out. The results of the investigations show that the ABC-PID is more robust and outperforms other tuning techniques, and demonstrate the effective response of the proposed technique for a robotic manipulator. Furthermore, the ABC-PID controller is implemented on the hardware setup of RAX-1 and the response during exercise showed minute overshoot with lower rise and settling times compared to PSO and Zeigler-Nichols-based controllers.

Funder

MOSTI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. Modified Constraint-Induced Therapy in Acute Stroke: A Randomized Controlled Pilot Study

2. Incidence and Characteristics of Total Stroke in the United States

3. Heart disease and stroke statistics—2014 update: A report from the American Heart Association;Members;Circulation,2014

4. A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control

5. A Review on Tuning Methods for PID Controller;Bharat;Asian J. Converg. Technol.,2019

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3