A Thorough Evaluation of GaN HEMT Degradation under Realistic Power Amplifier Operation

Author:

Bosi Gianni1ORCID,Raffo Antonio1ORCID,Vadalà Valeria2ORCID,Giofrè Rocco3ORCID,Crupi Giovanni4ORCID,Vannini Giorgio1ORCID

Affiliation:

1. Department of Engineering, University of Ferrara, 44121 Ferrara, Italy

2. Department of Physics, University of Milano-Bicocca, 20126 Milano, Italy

3. Electronics Engineering Department, University of Rome Tor Vergata, 00133 Roma, Italy

4. BIOMORF Department, University of Messina, 98125 Messina, Italy

Abstract

In this paper, we experimentally investigate the effects of degradation observed on 0.15-µm GaN HEMT devices when operating under realistic power amplifier conditions. The latter will be applied to the devices under test (DUT) by exploiting a low-frequency load-pull characterization technique that provides information consistent with RF operation, with the advantage of revealing electrical quantities not directly detectable at high frequency. Quantities such as the resistive gate current, play a fundamental role in the analysis of technology reliability. The experiments will be carried out on DUTs of the same periphery considering two different power amplifier operations: a saturated class-AB condition, that emphasizes the degradation effects produced by high temperatures due to power dissipation, and a class-E condition, that enhances the effects of high electric fields. The experiments will be carried out at 30 °C and 100 °C, and the results will be compared to evaluate how a specific RF condition can impact on the device degradation. Such a kind of comparison, to the authors’ knowledge, has never been carried out and represents the main novelty of the present study.

Funder

Italian Ministry of University and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Key-Components for Ultra-low DC Power Gallium Nitride Low-Noise Receivers;Lecture Notes in Electrical Engineering;2023-11-29

2. Experimental Investigation on Class-E and Class-F-1 Operation under Square-Waveform Excitation;2023 International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC);2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3