Abstract
Many authors suggest directional antennas to enhance the transmission performance of ZigBee networks. For line-of-sight propagation, directional antennas can extend the transmission range or reduce the transmit power. Directional antennas may also reduce interference between networks operating in the same frequency channel. However, these antennas may not perform similarly under non-line-of-sight propagation conditions. This work presents a study with ZigBee modules comparing the performance of a directional antenna with an omnidirectional one. The measurements were conducted on a university campus for different propagation outdoor environments. A deconvolution technique was applied to estimate the received signal as a function of the azimuth angle. The results demonstrated that the received power followed the gain difference between antennas only for paths with low attenuation. Considering the same Effective Isotropic Radiated Power (EIRP), the system with directional antennas started to lose packets at the same distance as the omnidirectional antennas. The directional antenna did not allow the increase in the link range compared to the omnidirectional antenna. The power consumption was also measured for different transmit power levels of the ZigBee radio. The study showed that the control circuits of directional antennas typically consume more power than omnidirectional antennas operating at a higher transmit power level.
Funder
Fundação para a Ciência e Tecnologia
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献