Hill-Climb-Assembler Encoding: Evolution of Small/Mid-Scale Artificial Neural Networks for Classification and Control Problems

Author:

Praczyk TomaszORCID

Abstract

The paper presents a neuro-evolutionary algorithm called Hill Climb Assembler Encoding (HCAE) which is a light variant of Hill Climb Modular Assembler Encoding (HCMAE). While HCMAE, as the name implies, is dedicated to modular neural networks, the target application of HCAE is to evolve small/mid-scale monolithic neural networks which, in spite of the great success of deep architectures, are still in use, for example, in robotic systems. The paper analyses the influence of different mechanisms incorporated into HCAE on the effectiveness of evolved neural networks and compares it with a number of rival algorithms. In order to verify the ability of HCAE to evolve effective small/mid-scale neural networks, both feed forward and recurrent, it was tested on fourteen identification problems including the two-spiral problem, which is a well-known binary classification benchmark, and on two control problems, i.e., the inverted-pendulum problem, which is a classical control benchmark, and the trajectory-following problem, which is a real problem in underwater robotics. Four other neuro-evolutionary algorithms, four particle swarm optimization methods, differential evolution, and a well-known back-propagation algorithm, were applied as a point of reference for HCAE. The experiments reported in the paper revealed that the evolutionary approach applied in the proposed algorithm makes it a more effective tool for solving the test problems than all the rivals.

Funder

Polish Ministry of Defence

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3