Affiliation:
1. Boston University, Boston, MA, USA
Abstract
Autopilot systems are typically composed of an “inner loop” providing stability and control, whereas an “outer loop” is responsible for mission-level objectives, such as way-point navigation. Autopilot systems for unmanned aerial vehicles are predominately implemented using Proportional-Integral-Derivative (PID) control systems, which have demonstrated exceptional performance in stable environments. However, more sophisticated control is required to operate in unpredictable and harsh environments. Intelligent flight control systems is an active area of research addressing limitations of PID control most recently through the use of reinforcement learning (RL), which has had success in other applications, such as robotics. Yet previous work has focused primarily on using RL at the mission-level controller. In this work, we investigate the performance and accuracy of the inner control loop providing attitude control when using intelligent flight control systems trained with state-of-the-art RL algorithms—Deep Deterministic Policy Gradient, Trust Region Policy Optimization, and Proximal Policy Optimization. To investigate these unknowns, we first developed an open source high-fidelity simulation environment to train a flight controller attitude control of a quadrotor through RL. We then used our environment to compare their performance to that of a PID controller to identify if using RL is appropriate in high-precision, time-critical flight control.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction
Cited by
276 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献