Reinforcement learning-based drone simulators: survey, practice, and challenge

Author:

Chan Jun Hoong,Liu Kai,Chen Yu,Sagar A. S. M. Sharifuzzaman,Kim Yong-Guk

Abstract

AbstractRecently, machine learning has been very useful in solving diverse tasks with drones, such as autonomous navigation, visual surveillance, communication, disaster management, and agriculture. Among these machine learning, two representative paradigms have been widely utilized in such applications: supervised learning and reinforcement learning. Researchers prefer to use supervised learning, mostly based on convolutional neural networks, because of its robustness and ease of use but yet data labeling is laborious and time-consuming. On the other hand, when traditional reinforcement learning is combined with the deep neural network, it can be a very powerful tool to solve high-dimensional input problems such as image and video. Along with the fast development of reinforcement learning, many researchers utilize reinforcement learning in drone applications, and it often outperforms supervised learning. However, it usually requires the agent to explore the environment on a trial-and-error basis which is high cost and unrealistic in the real environment. Recent advances in simulated environments can allow an agent to learn by itself to overcome these drawbacks, although the gap between the real environment and the simulator has to be minimized in the end. In this sense, a realistic and reliable simulator is essential for reinforcement learning training. This paper investigates various drone simulators that work with diverse reinforcement learning architectures. The characteristics of the reinforcement learning-based drone simulators are analyzed and compared for the researchers who would like to employ them for their projects. Finally, we shed light on some challenges and potential directions for future drone simulators.

Funder

Institute of Information & communications Technology Planning & Evaluation

Information Technology Research Center

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3