An FPGA-Based LSTM Acceleration Engine for Deep Learning Frameworks

Author:

He DazhongORCID,He Junhua,Liu Jun,Yang Jie,Yan Qing,Yang YangORCID

Abstract

Over the past two decades, Long Short-Term Memory (LSTM) networks have been used to solve problems that require modeling of long sequence because they can selectively remember certain patterns over a long period, thus outperforming traditional feed-forward neural networks and Recurrent Neural Network (RNN) on learning long-term dependencies. However, LSTM is characterized by feedback dependence, which limits the high parallelism of general-purpose processors such as CPU and GPU. Besides, in terms of the energy efficiency of data center applications, the high consumption of GPU and CPU computing cannot be ignored. To deal with the above problems, Field Programmable Gate Array (FPGA) is becoming an ideal alternative. FPGA has the characteristics of low power consumption and low latency, which are helpful for the acceleration and optimization of LSTM and other RNNs. This paper proposes an implementation scheme of the LSTM network acceleration engine based on FPGA and further optimizes the implementation through fixed-point arithmetic, systolic array and lookup table for nonlinear function. On this basis, for easy deployment and application, we integrate the proposed acceleration engine into Caffe, one of the most popular deep learning frameworks. Experimental results show that, compared with CPU and GPU, the FPGA-based acceleration engine can achieve performance improvement of 8.8 and 2.2 times and energy efficiency improvement of 16.9 and 9.6 times, respectively, within Caffe framework.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference28 articles.

1. Sequence to sequence learning with neural networks;Sutskever;arXiv,2014

2. Long Short-Term Memory

3. Optimizing performance of recurrent neural networks on gpus;Appleyard;arXiv,2016

4. Torch: A Modular Machine Learning Software Library;Collobert,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3