Publisher
Springer Science and Business Media LLC
Subject
Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering
Reference45 articles.
1. Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278–2324. https://doi.org/10.1109/5.726791
2. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
3. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. https://arxiv.org/pdf/1706.03762.pdf
4. Pyle, R. J., Bevan, R. L. T., Hughes, R. R., Rachev, R. K., Ali, A. A. S., & Wilcox, P. D. (2021). Deep learning for ultrasonic crack characterization in NDE. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68, 1854–1865. https://doi.org/10.1109/TUFFC.2020.3045847
5. Cantero-Chinchilla, S., Wilcox, P. D., & Croxford, A. J. (2022). Deep learning in automated ultrasonic NDE–developments, axioms and opportunities. NDT & E International, 102703.